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Abstract

Using energy conservation and causality considerations, the completeness of scat-
tering states in established for plane waves impinging on an irregular interface. Pro-
vided certain limiting operations commute with differentiation, it is shown that surface
waves need not be explicitly included in the Weyl representation of the Green's func-
tion in the presence of a rough interface. Rather surface waves are implicitly included
through the poles of the scattering amplitudes. This result was used implicitly in a
recently developed scheme to treat scattering in a duct using half-space scattering

amplitudes.
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I Introduction

In an earlier paper the method of smoothing was applied to wave propagation in a duct

with rough boundaries. The idea was to make use of plane-wave scattering amplitudes for

each of the surfaces in isolation, i.e., scattering amplitudes for each surface in a half-space.

Fields expressed as superpostions of scattering states associated with each surface were

matched across a fictitious plane passing through the middle of the duct. Implicit in this

scheme is the notion that any field in the duct below (or above) the fictious plane can be

represented as a superposition of the following type:

V(r)= JdQa(Q) (exp(iQ. R-iqz)+ f dQ'[exp(iQ'- R + iz)T(Q'Q)J). (1)

Here Q represents a horizontal wave vector and q = VW2/c 2 - Q2. In some instances,

however, one knows there are surface waves which decay exponentially from the interface.

Are these included in this formulation? In the case of an interface between two fluids,

how does one incorporate waves propagating up from below the interface? The aim of the

present work is to examine these questions, in effect to show under what circumstancee

set of scattering states for a rough fluid-fluid interface is complete.

As indicated, the scattering states should be linear in the scattering amplitudes. One CQ

learns early on that armed with a complete set one should be able to construct a Green's L)

function for the wave equation bilinear in the scattering states: P.Co

G(r,r') ; I dk'01k,(r)1,(r')/(k 2 - k). (2)

This means that the Green's function will contain terms bilinear in the scattering ampli-

tudes. On the other hand, the Green's function in the absence of a boundary is expressible

as a superposition of downgoing plane-waves below the source level (through the Weyl

representation). The presence of a boundary can be accounted for by converting these

downgoing waves into a sum of the downgoing wave plus reflected upgoing waves which

are linear in the reflection coefficient or scattering amplitude. The Green's function in the

presence of a boundary is thus the free-space Green's function plus a scattered field linear

in the reflection coefficients [1]. How does one reconcile these two representations of the

Green's function, one of which contains terms bilinear in the scattering amplitudes, the

other of which contains terms at most linear in the scattering amplitudes? A hint comes odes
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from the optical theorem which is a consequence of energy conservation. The optical the-

orem relates the imaginary part of the forward scattering amplitude (linear) to the total

cross section (quadratic).

In this paper the reconcilation of these two types of expressions for the Green's function

will be worked out explicitly for rough interfaces separating two fluids. How surface

waves and evanescent waves come in will be shown in detail. The ideas underlying the

reconciliation are energy conservation, causality, and time reversal invariance. Of course,

these notions have been discussed in depth for quantum mechanical scattering by bounded

objects 12). Here the scattering surfaces are not bounded and there is the possibility that

the form the wave function depends upon which side of the boundary it is to be evaluated.

These features make the interface problem slightly different than the quantum problem.

Additionally, role of "closed" channels must be carefully accounted for in this work. In the

case of rough interfaces, (at least if the Rayleigh hypothesis holds) the wave functions can

be expressed explicitly in terms of the scattering amplitudes so that one can see dearly

how the connection among the general rules plays out.

Earlier work treating the completeness of elastic waves in a solid bounded by a vacuum

at a smooth interface was done by Ezawa [3]. He showed completeness by close examination

of the special form of the reflection coefficient and by explicitly considering the Rayleigh

surface wave and evanescent waves. Here, the motivation is to show how general principles

lead to completeness relations.

In section II scattering states and scattering amplitudes will be defined. General re-

lations such as reciprocity will be reviewed, particularly the generalized optical theorem.

In section III proof of completeness will be presented for rough fluid-fluid interfaces. In

section IV, the Weyl representation of the Green's function for this rough interface will be

discussed. The main result is that surface waves will appear explicitly in completesa rela-

tions, but that in the Weyl representation of the Green's function with an interface, poles

in the scattering amplitudes account for surface waves. There is an appendix containing

details of the computations.
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II Scattering states

This section is concerned with solutions of the Helmholtz equation

(V' + (w'/c'))0(r) = 0 (3)

in two half-spaces separated by a rough interface. On the upper side of the interface the

sound speed is c+ and the ambient density is p+. Across the interface there is a sharp

jump discontinuity in these parameters so that below the interface they become c- and

p-. The field 0 represents the velocity potential for particle motions. For normal fluids

presure and normal velocities must be continuous across the interface. In terms of the

velocity potential these conditions are expressed by

p+b(r+ ) = p-O(r-)

n.V (r + ) = n.V - (r-) (4)

(See Ref.[4].) In addition to boundary conditions across the interface, physical solutions

of the Helmholtz equation must not diverge as z -+ -oo, however, they may exhibit

exponential growth in limited domains.

Consider scattering states associated with the Helmholtz equation and these bound-

ary conditions. For each frequency w there are solutions (X+) which grow out of plane

waves incident from above the interface and become a superpostion of plane waves leav-

ing the interface both above and below the interface. Likewise there are such solutions

growing out of plane waves incident from below (X-). Wave vectors here have horizontal

components denoted by uppercase letters, e.g., Q, K... and vertical components denoted

by corresponding lower case letters q, k.... (Similarly, position vectors will be denoted

by upper and lower case letter, e.g. r = (R,z)). Because the plane waves must sat-

isfy the Helmholtz equation, vertical and horizontal components of wave vectors are not

independent; they must satisfy

q= VF 2/c 2  (5)

above or below the interface. The coefficients of the scattered plane waves are the scatter-

ing amplitudes, R1,(Q'IQ) for the scattering from the upper fluid (medium 1) with hori-

zontal wave vector Q back into the upper fluid with horizontal wave vector Q', R2,2(Q'IQ)
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for scattering from the lower fluid (medium 2) back into the lower fluid, TI, 2(Q'IQ) for

scattering from the lower fluid into the upper fluid and T2,1(Q'IQ) for scattering from the

upper into the lower fluid.

Above the highest point of the interface (H + ) and below the lowest point of the

interface (H-), scattering states can be written as follows:

+ (r) exp(iQ . - iq+z) + fdQ'exp(iQ'. R + iq+'z)Ra,,(Q'lQ) if z> H +

XQ,q+ ( = f dQ' exp(iQ' • R. - iq-'z)T2,1(Q'IQ) if z < H-

(6)

The scattering state x- is given likewise by

f dQ'exp(iQ' - R + iq+'z)T1,2(Q'IQ) if z > H+

xQ (r) exp(iQ - R + iq-z) + fdQ'exp(iQ'. R - iq-'z)R2 ,2(Q'JQ) if z < H-

(7)

In these equations the scattered vertical wavenumbers q* are given by Eq.5 with Q

replaced by Q'. These solutions can be parameterized by w rather than q*. In order to

produce scattered waves which travel away from the surface or which decay away from

the surface, if q' is real, it must have the same sign as w, and if it is pure imaginary, it

must be positive imaginary. As a function of w, q* has two branch points at -w/c*. It

will be convenient to take branch lines extending out from these points just under the

real axis. Then q will be analytic in the upper half complex w plane. (See Fig. 2). This

is desirable because the implicit temporal phase is exp(-iwt). For t < 0 integrals over

w can be closed in the upper half plane. Other factors should be analytic there so that

scattered fields vanish before the incident wave arrives at the scattering surface. (If there

are surface waves, there will be poles in the upper half plane, however).

Recall that for an acoustic field with pressure p and particle velocity v the energy flux

is [4]

f = pv. (8)

For fields which represent time harmonic velocity potentials,

= Re(4'exp(-iwt)) (9)

the energy flux averaged over a period is

()= jfdt = (pw/2)ImIV . (10)
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It will be convenient for describing some of the formal properties of the scattering ampli-

tudes to use plane waves normalized to have unit flux in the vertical direction:

exp(iK.- R ±i ikz)/1f' k2. (1

11.1 Reciprocity

Consider horizontal planes Z " above and below the rough interface separating the two

fluids. Let ?P. and Ob be any two solutions of the Helmholtz equation satisfying the

t -undary conditions, Eq.4. It follows from Green's theorem, the Helmholtz equation and

the boundary conditions that

- ObOz) = j_ dRp-(tP.8.b~ - 1000(12)

Actually this result holds even if there are a number of fluid or elastic layers between the

planes Z- and Z + . This result also holds when the continuity of normal velocity condition

is replaced by

n.VO + - n.VO = -gp+'+. (13)

For flat interfaces this last boundary condition gives rise to surface waves which can be

seen to manifest themselves as poles of the reflection coefficient.

One reciprocity relation follows from Eq.12 by using 0. = X+ and O'b = X+
Q -K'

q+R,,,(-Ql - K) = k+ R ,,I(KIQ). (14)

By using l'b = X-K one finds

p-k-T2 ,(KQ) = p+q+T,2(-Q[ - K). (15)

It follows from using 0. = XQ and Ob = X-K that

q-R2,2(-QI - K) = k-R 2,2(KIQ). (16)

11.2 Energy conservation

It now is convenient to use flux-normalized plane waves. Define incoming plane waves by

4iQnq,(r) = exp(iQ . R : iq z)//pwq" , (17)
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and outgoing plane waves by

exp(iQ -R± iq / (18)

where the signs are to be chosen according to whether z is above or below the interface.

The roots in the normalization are to be understood as analytic functions with branch

lines along the negative real axis. Normally the sheet that will be used will have non-

negative real part. Since V'- = l/-* and since q is pure imaginary if w/c < Q, it follows

that when w is taken to be an independent variable

O(w/C ± - Q)<n'Q,q*(r) + iG(Q - w .q*(r) - l oQuqt ()• (19)

In order that the scattering matrix, to be defined below, reflect reciprocity as simply as

in Eq.26, it is important that the normalization described here involve q rather than jqj.

The abbreviations

O*(Q) = o(W/c* - Q) (20)

P(Q) = o(Q - w/c*), (21)

will be used in the next section.

Suppose that above and below the interface for a limited range of z, arbitrary super-

positions of incoming and outgoing flux-normalized plane waves are constructed. Such a

field above the interface is

(r,w) = +(r) = dQo*,Qq+ (r)ain(Q) + +,q ,+(r)aot(Q). (22)

Below the interface the this field is written

ik(r,w) = 0b-(r) = I dQ_2 Qq_ (r)bin(Q) + f_ ,,q_.(r)bot (Q). (23)

Here the vertical wave numbers are determined from the horizontal wave numbers and w

by Eq.5. It is not claimed yet that all fields can be represented this way; that would be

begging the question of completeness.

If these states obey the boundary conditions and are constructed from the scattering

states X± , it follows that the outgoing coefficients aout and but are related to the incoming
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coefficients ai,, and bi, through the scattering amplitudes. Because normalized waves are

now being used, this relationship is

aot(K) --[dQ ,lKQ I2(I) anQ (24)

b. K) S2,1(KIQ) S2 2(KI) bi(Q)
where the scattering matrix S, is expressed in terms of the scattering amplitudes by

S, 1(KIQ) S, 2(KIQ) //R-,,(KIQ) P_T R,2(KIQ) (25)

In terms of the scattering matrix S the reciprocity conditions are simply stated as

S(KIQ) = S(-KI - Q)T . (26)

Note that "anti-evanescent" waves may be included in these superpositions because Q

may be greater than w/c. This is permitted if the domain in which the superposition is

to represent a physical state is limited in z.

To see how energy conservation is expressed in terms of S, let 0. = Oiand b -- =

in Eq.12. This is permissible only if 0* obeys the same Helmholtz equation as , ,.e.,

(w/c±)2 must be real. In effect, there can be no dissipation.

By taking care with the cases in which vertical wave vectors q* are purely real or

purely imaginary, one finds

IQ<1,/c+ dQlai(Q)I2 + 'Q<w,/c- dQlbi(Q) 2 - 2Q>l/c+ dQIm(a°t(Q)ai(Q))-

Q<, ,/c+ dQjaout(Q) 2 + </ c-dQlbfu-.(Q)I 2 - 2/Q>,d/c-dQIm(b,,(Q)bj,,(Q)').

(27)

A similar result for elastic waves can be found in Ref.[[6]]. This result holds for arbitrary

incident wave coefficients ai,, and bi,, and hence it implies constraints on the scattering

matrix. To separate the cases of propagating and non-propagating waves it is convenient

to define the matrix operator kernels 0 and 6 by

E)(QK)_ = O(,w,/c+- Q)b(Q -K) O01 (28)
0 0(Iwl/c- - Q)6(Q - K)

and

O(QIK) ( O(Q - IwI/c+)b(Q - K) ) ). (29)
So(Q -- K)
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Now because Green's theorem holds for arbitrary incident waves, the scattering matrix

must satisfy

0 = stos + i(sto - 0S). (30)

This is a matrix equation; matrix multiplication is implied as is integration over interme-

diate wavevectors. It represents a generalized optical theorem since both propagating and

non-propagating waves are involved, and because there is a result here for non-forward

propagation. A result of this type was used by Maystre et al [8], but incident "anti-

evanescent" waves were not included by these authors. See also Ref.[7] where again expo-

nentially growing waves were not considered.

In quantum scattering the analogous result is unitarity of the S matrix. By using the

reciprocity relation, Eq.26, and the fact that the matrix operators 0 and 6 are independent

of the sign of Q, the horzontal wavevector, it is possible to show the following alternative

expression of energy conservation:

0 = sest + i(sA) - Ost). (31)

In a space in which all waves are propagating (all channels are open) these relations reduce

to the unitarity condition in quantum scattering:

1 = SSt = sts (32)
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III Completeness

Using just the scattering amplitudes it will not be possible to show completeness in a true

sense. This is because the representation of scattered waves as a superposition of outgoing

plane waves weighted by the scattering amplitudes might not converge as the field point

is moved between the lowest (H-) and highest points of the surface (H+). That is to

say that the Rayleigh hypothesis might be violated. Nevertheless, by using the unitarity

condition, Eq.31, it is possible to discuss the following quantity for points outside the

forbidden region.

1(2r)3 f dQ [1' dq+X+,+(r)x , + (r') - + J dq pC(-, 2  (r)x ,(r)n]

(33)

The vertical wavenumbers associated with the incident wave here are all real. Depending

on the magnitude of the outgoing horizontal wave vectors, the scattered vertical wavevec-

tors may be either real or pure imaginary since, for example,

q+,= W2/C(+) 2 - Q, = VQ 2 + q(+) 2 - Q'2. (34)

In the remainder of this section it will be shown that, in fact,

A(r, r') = 63(r- r'), (35)

which is to say that the states X± are complete in the limited sense indicated above,

provided there are no surface waves.

The quantity A is evaluated by first expressing the scattering states X in terms of flux-

normalized plane waves .0 and the scattering matrix S, and then changing from integration

over vertical wavenumbers to integration over the frequency w. Since the incident waves

in A are all propagating, horizontal wavevectors Q are restricted to Q < w/c. In this

fashion, for z > H+ and z' > H+, A can be written as

A(r, r') = j o0 wW 2p+
JO 2(c+)2(2 )3

JdQ 1outx

IQ<wlc+ dQ [ ,q+(r) + I

[47,qnq+(r') + fdQ1 +
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[c<i-dQ'6ou ',~ ,(r)SI ,2( Q'IQ;W)] [dQkOguti~i('S.("Qw] (36)
II~wc +OQ I I 

In going over to the integration over frequency, factors of c(-) 2 were canceled by

dq- = Wd _  (37)

C(-) 2q-

In the terms quadratic in the scattering matrix in Eq.36, one can recognize the (1,1) part

of SOSt that appears in the optical theorem, Eq.31, if the integration over the incident

wavevectors Q is performed before integration over Q' and Q". The term arising from

the (1,1) matrix on the left side of the optical theorem, Eq.31 combines with the terms in

Eq.36 to give b(r - r'). The remaining terms are linear in S, coming from the linear terms

in Eq.36 and the linear terms on t*.e right side of the optical theorem. The result of using

the optical theorem in Eq.36 is thus

-+ I 2lP+ dQ' dQ"

A(r,r') = 6(r - r') + J d"2(c+)2(2;)3

{ o q+, (r)Sii(Q'!Q";w)4'q+,,(r') + Q";wq+) (r)-S ,1 (Q'OQ-; W),4Q,,+,,(r,) }

+,Q q [+QoO

(39)

Because reciprocity implies
st / , . )  Q, I -I( Q ";W)

I,1 (QI,-;w) = Sl,(Q"JQ';1) = 1( - Q";), (40)

the two terms in braces are complex conjugates.

At this point is is useful to switch back to unnormalized plane waves and to replace

S1,1 by R1 ,1 . Because of the way branch cuts have been taken,

q(-w) = -q'(w),
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and because xQ(r;w) and X_q(r; -w&) grow out of the same incident plane wave, one

concludes that

Rii(Q'IQ"; w) - R 1 ,(-Q'I - Q"; -w)'. (41)

Changing signs of the dummy variables Q' and Q" for the second term in braces and

letting w - -w for this term gives

r' (r - r') + j0 &Jc)2 2 ) JdQ1JdQ11

exp(-iQ'. R + iQ". H!'+ iq+'z + iq+"z')Ri,,(Q'JQ";&w)/q+". (42)

Anticipating the next section, one might identify the integral above to be the time

derivative (because of the factor of w) of the scattered field arising from a point source

at r' originating at time t = 0 and evaluated at r and time t = 0. This is what one

would guess from the Weyl representation of the free-space Green's function. Since there

should normally be no scattered field until a time later than the origin of the incident

field, the integral in Eq.42 should vanish. However, if there are surface waves, these can

exist without excitation from above. In that case the "scattered" field might not vanish at

t = 0. The existence of surface waves and the vanishing of the integral in Eq.42 hinges on

the analytic properties of R1,1 as a function of frequency, w. Because in the present case

z and z' are positive and the vertical wave vectors q have non-negative imaginary parts

in the upper half complex w plane, one should be able to add a large semi-circle in the

upper half complex w plane to the contour of integration in Eq.42 and evaluate the entire

integral using the residues of R, assuming that it is possible to perform the integration

over w before the integration over Q' and Q".

In the case of a flat fluid-fluid interface, the scattering amplitude is given by

R,,i(QIQ';w) = b2 (Q _ Q,1 q+p - - q-p+ (43),q+p- "+ q-p+"

The reflection coefficient is analytic in the upper half w plane so that the frequency integral

in Eq.42 vanishes. (Recall that branch cuts extend outward from w-+it = ±c:Q just below

the real axis.) In this case, the integral on the right side of Eq.42 vanishes, showing that

the scattering states X* are complete.

If, on the other hand, the boundary condition Eq.13 is used instead of continuity of

the normal derivatives, and if c+ = c- and p+ = p-, then the scattering amplitude for a
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flat surface is given by

ig/2Ri,i(QIQ';w) =6 2(Q - Q)q -tg/2" (44)

There is now a pole in the upper half w-plane at

W = icVg2/4 - Q2, (45)

provided Q < g/2. In this case, the integral on the right hand side of Eq.42 becomes

-1 f dQ2 exp(-iQ . (R - l) - g(z + z')/2). (46)
(27r) 2 JQ<9/2 2

This can be recognized as the contribution of normalized surface waves

XS=r) = exp(-iQ -R - glzl/2), ' (47)

to the completeness integrals.

To complete the demonstration of the relationship between A(r,r) and 6(r - r),

A(r, r') needs to be evaluated for z > H+ and z' < H-. This is done in the Appendix.

(Other cases of z and z' follow from these two iust by exchanging the indices labeling the

two media.) The result is that for z > H+ and z < H-, A becomes

A(r, r') = w WL~C)( ) JdQ'JdQ"

+ exp(-iQ' . R + iQ". It' + iq+fz - iq-"z')T,2(Q'IQ";w)lq- ". (48)P-

This integral again can be recognized as the time derivative at t = 0 of the scattered field

evaluated at r, above the interface arising from a point source located below the interface

at r'. If the scattering amplitude T is analytic in the upper half w plane, the integral

vanishes. Again this is consistent with the requirement of causality when there are not

surface waves.

Thus if the scattering amplitudes are analytic in the upper half plane,

A(r, r') = 6(r -),

and the the scattering states X4" are complete. If so the scattering states here are the nor-

mal modes described by Tolstoy [9]. Again note that in the the construction of A incident
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waves are all propagating, while scattered waves may be propagating or evanescent. Also,

it should be said that although the flat surface reflection and transmission coefficients

might be analytic in the upper half w plane, this is no guarantee that the corresponding

rough interface scattering amplitudes are analytic there. Roughness may induce surface

waves, at least for the mean field (See [5]).
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IV Green's functions

In this section, the results of the last section will be used to construct the Green's function

for the rough interface problem at least outside the region between H- and H+. Define

AG similarly to A:

1 f 0 [0 dq+c(+) 2  + +
AG(rr;) -_dQ[ 2) XQ,q+ (r)xA,+ (rl)+

(2r)3 JL1o (A\2 - W(+)Q2)

00 dq-c(+)2 p+c(-) 2XQ- (r)xQ (r')* (49)0o (,\ 2 -_1-)2) 7~Cl+12 Q,q_(- q( * Q (49

where

W(±)2 = c(+) 2(Q2 + q(:) 2 ). (50)

The Green's function, G(r,r') should satisfy the same boundary conditions across the

interface as the scattering states X± and in addition,

(V 2 + A2/c(±) 2)G(r,r'; A) = 6(r- r'). (51)

The function AG will be examined as a candidate for G. It is clear that AG does satisfy the

boundary conditions across the interface. However, it is also clear that if the Helmholtz

operator can be passed through the various integrations in G, then

(V2 + A2/c(:1) 2 )A(r, r'; A) = A(r, r';)

- 6(r - r') - L) r (52)

The function 4 is an abbreviation for the double integral appearing in Eq.42. When

z> H+ and z'> H+ then

iP(rlr';w) = - 3dQ"

exp(-iQ'. R + iQ" . R! + iq+'z + iq+"z')Ri,1 (Q'jQ";w)/q+ ". (53)

When z > H+ and z' < H+, tP is read out from Eq.48: R1,1 is replaced by p+TI, 2/p- and

q+" is replaced by -q-+". Note that reciprocity implies that

'(rlr';w)- ='r'Ir;~) (54)
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Evaluation of AG can be carried out by the same steps used to evaluate A, keeping track

of terms quadratic in the scattering amplitudes and applying the optical theorem, Eq. 31.

The result of these manipulations is that AG becomes

AG(r, r'; d) =w d

00(A2 - W2 )

{ <,/+() - exdQ + 1
exp [iQ(R - R.') + iq+(z - z')] /q+ - 1r (rlr';w) (55)

Q C/+(27) 3  
-2wi (I5)

By letting A --* A + ic and adding a semi-circle to the contour in the upper or lower

half w plane, depending on the sign of z - z', the first integral is seen to be the Weyl

representation of the free-space Green's function with frequency A:

GSeerr' )J dQ
G (rr';) = (2r)22iq+(A) exp [iQ(R - R!) + iq(A)+jz - z'l. (56)

In the second integral, involving 0, the contour can be closed in the upper half W plane

when both z and z' are positive. There are two kinds of contributions. First there is the

residue from the pole at w = \ + ic and second there are the contributions from the branch

cuts or poles of 1. As a result, AG can be written as

AG(rlr'; A) = Gir..(rlr'; A) + 0(rlr'; A)/2 - L(A 2  -' (ri r'; w) (57)

The contour B encloses the singularities and branch cuts of , in the upper half plane

but not A + ic. When acted upon by the Helmholtz operator, the last integral yields the

integral on the right side of Eq.52. Thus if this integral is subtracted from AG, the result

is the Green's function:

G(r, r'; A) .Ge(rtr'; A) + 0(rlr'; A)/2 (58)

One can check easily enough to make sure that this satisfies proper boundary conditions

across the interface, if this construction is repeated for z' below the surface, and if the

Rayleigh hypothesis holds. The point of this exercise is that the poles and branch cuts of

the scattering amplitudes do not make any explicit contribution to the Green's function.

By adding 0 to the free space Green's function, the incoming plane waves of the Weyl rep-

resentation are simply replaced by the scattering states. Surface waves are automatically

accounted for even though surface waves are explicitly required for completeness.
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Appendix

In this appendix, A(r, r') is evaluated for z > H+ and z' < H-. Some the the details

sketched in the text for the case z' > H+ will be made more explicit here. For example,

in terms of normalized plane waves the scattering states are given byt J7P ,Qq+(r) + f d ,q+ W(Q'IQ;w)] z> H +

XW [r + fd'ou S,('Q;wlA)I QI+ ,,q_,S2,q Iqw) z < H-
(Al)

[ (r) + fdQ'C0out, qS2,2(IQ'iQ;W)] z < H-

I outf dQ+,Q, +, (r)Si,2(Q'IQ; W) z >H+

(A2)

It follows from the definition of A, Eq. 33 that

A~rr' = 2~~ dQ P~w j dq+ [<,q,+(r) + IJdQ'Ou ,(r)Si,i(Q'I Q;w)] x
(2ro32 +I I

Q FQq, r)21 ;

(2r)3 1 d p -qp(c+) 2 [V dQ' q ',q+,(r)S 1,2(Q IQ; w)]
in 

(A3)~ # l It a

0 IQq- (r) + J dQ1Itnq...1 (r')S2,2(q"iq; W)] (3

Now replace the variables of integration q1 by w using

q =-2/(C+)2 _ Q2  (A4)

and change the order of integration so that the integration over Q < W/c* is first, followed

by integration over Q' and Q" and then w. Multiplying out terms in S gives

A (r, r') 1 (2ir)3 ~ (2 {j +Q dQfd".P'q+ (r)SI, 2(QIQ ;&0t -)*i.,,(r)T+

Q d2(q 'lq ; W ) , _: ., _ .1

IQ•c I+. q (r)S 'q 2 ... , _ o
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IQ,+,c , (,+ } ,2(Q , IQ ; W )S2,2(Q I1Q "; W X 7 4_,q q "( AM )

The integrals over Q in the last expression are equivalent to the Q', Q" elements of

S1O+(Q)Slt,2 + S1,2 e +(Q)S 2,2.

This is part of the (1,2) matrix in the optical theorem, Eq.31 which implies

Q<w /c+ SII(Q'IQ;+)st 2(Q!Q";, ,) +.j /sis(Q'IQ;o)st 2 (qIq";w) =

- i [s, 2 (Q'IQ";w)-(Q") - 9)(Q')SZ,2(Q'IQ";w)] (A6)

Substituting this result into the last expression for A eliminates the terms bilinear in S.

The remaining terms linear in S can be written
A~ ~o (r ' 0 w W2 P+ dQ' dQ"

A(r, r') = j dW2(c+)2(2ir)3 I

{W+Q+ (r)S"q- (Q)'q,,(r) - (Q )W,q,,,_,,(r')1 +

-+,(q, +,(r) + i+(Q' )4"ut)- , .-(r)] ._12(Q'lQ"; W) , -(r') I (

Usinq Eq.19 to replace the terms in square brackets gives

A(r,r') = 0J W 2(c+)+ )3dQ' dQ"

ou° t , r $ t {'lntw ,ot,, [ *

The reciprocity relation of Eq.40 is for transmission expressed by

stl, 2 ('j""w)l = S,I(Q"]Q;w) = S1,2(-QI - Q";w). (A9)

Because

exp(-iQ • R - iq-(w)z) ° = exp(iQ R. + iq-(-w)z), (A10)

it follows that

TI,2(Q'IQ; -W) = T1,2(-Q'l - Q; -W), (All)

18



and therefore

S, 2(QIQ";) = , - Q"; -CJ). (A12)

With this result the two terms in A can be combined to give a single integral over frequency

from -o to +oo. Expressing the result in unnormalized plane waves and TI, 2 finally gives

A(r, r') = 00 &1; WP+ /) dQdQ"A~'r) 0 dp-(c+)2(27r)3

exp(i(Q' R - Q" .R') + iq-'z - iq-"z')T,2 (Q'Q";W)/q-"(W). (A13)

This is Eq.48 of the text.
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Figure Captions

Figure 1: The geometry of scattering from a rough interface. The rough interface sep-

arating fluids of density p+ = d+ and sound speed c+ on the top and density p- = d-

and sound speed c- on the bottom. The interface is bounded between parallel planes at

z = H*. Wave can be incident from either side of the interface.

Figure 2: Contours of integration in the complex w plane. The dotted half-lines indicate

the branch cuts associated with q1. The dashed line and the real axis is the actual contour

of integration closed by a semi-circle at infinity.
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